AZ DISPLAYS, INC.

COMPLETE LCD SOLUTIONS

SPECIFICATIONS FOR LIQUID CRYSTAL DISPLAY

PART NUMBER: DATE: AGM1212N-T SERIES APRIL 06, 2007

1. FUNCTIONS & FEA TURES

Glass Thickness	: 1.1mm
Viewing Direction	:60′clock
Driving Scheme	: 1/128Duty, 1/12 Bias
Power Supply for logic	: 5.0V
Backli ghtColor	: Whi te
Display Content	: 128*128 Dots
V _{LCD}	: 18.5V
Operation Temperature	:-2 0 to +70℃
Storage temperature	: -25 to +75℃
Driver IC	: S6B0 086
Controller IC	: T6 963C
With touch panel	

2. MODULE AR TWORK

Module Siz e	: 92(L)* 106(W)*14. 1(H)mm
Viewing Area	: 73(L)m m*73 (W)m m(LCD or Touch Panel)
Active Area	:70.35mm*70.35mm(LCD)
Active Area	: 70.1mm*69.0mm(Touch Panel)
Dot Pitch	: 0.55 (W)m m*0.55 (H)mm(LCD)
Dot Pitch	: 4.40 (W)m m*11.55(H)mm(Touch Panel)
Dot Size	: 0.50 (W)mm*0.50 (H)mm(LCD)
Dot Size	: 4.10 (W)mm*11.25(H)mm(Touch Panel)
Dot Gap	: 0.05 mm(LCD)
Dot Gap	: 0.3 mm(Touch Panel)

3. EXTERNAL DI MENSIONS

3.1 Module Draw ing

3.2 Touch Panel Draw ing

4. BLOCK DI AGRAM

4.2 Digital Touch Scr een Auto-Scanning Block Diagram

5. PIN AS SIGNMENT

NO.	SYMBOL	FUNCTION
1	FG	Frame ground(see note 1)
2		Active LOW : Force column scan counter to run continuously in order to
	/CSCAN	obtain a complete cycle
3 V	SS	Ground
		4 bits to indicate the column being scanned range0 to 15 corresponding to
16910		COL1 to COL16, with DS00 as LSB. Output is latched at the most recently
4,0,0,10	D 300~D303	touched position. When read while "TOUCH" is positive, the touched
		column is identified.*
5	VDD	Power supply for logic(+5V)
7 V	9	Power supply for LCD drive
9	/WR	Write Command ordata tomodule when "L"
11	/RD	Read Command or data from module when "L"
		3bits to indicate the row being scanned range0 to 7 corresponding to ROW1
12 14 16		to ROW8, with DS4 as LSB & DS6 as MSB. Output is latched at the most
12,14,10	D 304~D300	recently touched postion. When read while "TOUCH" is positive, the
		touched column is identified.*
13	/CE	Enable LCD controller when "L"
15	C//D	Command/daa select. "H" for command read/write. "L" for data read/write
17 /	ост	LCD Controller reset Controller initialize and DB00-DB7 are set to be high
1/ /	K31	impedance when/RSTis " L "
		Active LOW: Standby to scan. Scanning will begin when a touch is
18 /	SCA N	identified at any of the sensing position, and will continue until touch is
		removed.

19,21,23,25, 27,29,31,33	DB0~DB7	LCD data input/output. DB0(pin11) is LSB an d DB7(pin18) is MSB .
20 E	N D	A 4ms positive pulse generated at the end of a complete scan cycle (Max cycle time: 64ms)
22 T	OUCH	A 2ms positive pulse when scanning reaches an identified touch position. It can be used as an interrupt.
24,26,28,30,3 2,34,36,38,40	N.C. No	Connection
35	FS	Font select. "H" for 6x 8 font & "L" for 8x8 font
37 LED +(A)		A nodeof LE D backlight
39	LED -(K)	Cathode of LED backlight

* If D S00 to DS06 is read at the "END, then the last touched position will be identified.

6. POWER SUPPL Y

7.1 PCB DRA WING AND DESCRI PTION

Note: It is only a draft drawing to show the components on the PCB. We should update the drawing after the PCB sample is approved.

DESCRIPTION:

7-1-1. The polarity of the pin 37 and the pin 39:

	symbol	12 15 16	И	LED Polarity		
symbol	state	טנ כנ,כנ,	J4	37 Pin	39 Pin	
J6,J4	Each solder-bridge	Each closed	Each open	Anode	Cathode	
J3,J5	Each solder-bridge	Each open	Each closed	Cathode	Anode	

Note: In application module, J3=J5 =J2=closed, J4=J6=open.

7-1-2. The J1 is metal-bezel GND to module GND and J7 is mountingholes GND to module GND.

Note: In application module, J1=closed, J7=closed

7-1-3.The LED resistor should be bridged when J2 is closed

Note: In application module, J2=closed

7-1-4.T he R8 and the R9, R10, R11 are the LED resist or.

Note: In application module, R8 = R9= R10= R11=open

7.2 Example application

7-2-1. The LE D resistor should be bridged as following.

7-2-2. The 37 pin is the anode and the 39 pin is the cathodeas following.

8. ABSOLUTE M A XIMUM RA TINGS (Vss=0V, Ta=25°C)

PARAMETER	SYMBOL	RA TING	UNIT
Supply Voltage (Logic)	V _{DD}	-0.3 to 7.0	V
Input voltage	V _{IN}	-0.3 to VDD +0.3	V
Operating Temperature	Topr	-20 to +70	°C
StorageTemperature	Tstg	-25 to +75	°C

9. ELECTRICAL CHARACTERISTICS

1). DC Characteristics

Ta=25℃, VSS=0V

Parameter Symbo)	Conditions	Min.	Тур.	Max.	Units
Supply Voltage (Logic)	V _{DD} -V _{SS}	-	4.5	5.0	5.5	V
High Level In putVoltage	V _{IH}	V _{DD} =5.0V±10%	V _{DD} -2.2	-	V _{DD}	V
Low Level I nputVoltage	V _{IL}	V _{DD} =5.0V ±10%	0	-	0.8	V
High Level Output Voltage	V _{OH}	I _{он} =0.75mA	V _{DD} -0.3	-	V _{DD}	V
Low Level Output Voltage	V _{OL}	I _{OL} =0.75mA	0	-	0.3	V
Current	I _{DD(1)}	V _{DD} =5.0V		3.3	6.0	mA
Consumption(Operating)		$f_{OSC} = 3.0 \text{ MHz}$				
CurrentConsumption(Halt)	I _{DD(2)}	V _{DD} =5.0V			3	uA

2). AC Characteristics

Parameter Sym	bol		Min.	Max.	Units
C/D Setup Time	t _{CDS}	10	0	-	ns
C/D Hold Time	t _{CDH}	10		-	ns
CE, RD, W R Pulse Width	$t_{CE,}, t_{RD}, t_{WR}$		80	-	ns
Data Setup Time	t _{DS}	80		-	ns
Data Hold Time	t _{DH}	40		-	ns
Access Time	t _{ACC}	-		150	ns
Output Hold Time	t _{он}	10		50	ns

3). Power Supply ON/OFF Sequence

SIGNAL

Reset Sequence

Please maintain the above sequence when turning on and off the power supply of the module.

If VEE is supplied to the module while internal alternate signal for LCD driving (M) is unstable or RESET is active, DC component will be supplied to the LCD panel. This may cause damage to the LCD module.

10. TOUCH PANEL SPECIFICATIONS

- 10.1 E lectrical C hara cteristics of D igital Touch Panel
- 1). Max rating: DC. 10V, 1mA
- 2). Insulating resistance: More than 100meg-ohms at DC. 25 volts.
- 3). C ontact resistance: 20K Ohms or less.
- 4). C ontact bounce: L ess than 15 msec (*Input by finger).

50. Withstand voltage: Withstanding an applied voltage of AC. 25 volts (50Hz, 0.5m A) each terminal for one minutes. Shall not be any mechanical or electrical fail ures.

10.2 Mechanical C haracteristics of Digital Touch Panel

- 1). Activation force: 10~35 gf (Diagond cross point except dot space).
- 2). U sing by the silicon finger, hardnesstest with= 60° of R = 10mm
- 3). Surface hardness: 2H (based on pencil hardness test with JIS K 5400).
- 4). Total light transparency. 70% or more.
- 5). Transmission Haze: 6.0% (typical value).

10.3 Flow Chart of Touch Panel Programming

10.4 Timing Diagrams for Digital Touch Panel Auto-Scanning Mode

Remark: 1. Max. Ts=64ms (dependent on which key is pressed) 2. No. of TOUCH pulse=No. of key pressedat onetime

Remark: 1. Max. Ts= 64ms (dependent on which key is pressed.

2. No. of TOUCH pulse=No. of key pressedat one time.

10.5 Multiple Touch Situation

Column on the Right have higher priority than column on the Left.

Row on the Upper have higher priority than row on the Lower.

Column have higher priority than Row.

The above demonstration is when you press column 7 - row 4 with another key at the same times, the keys insides gray area have higher priority than column 7 - row 4. However, when you press column 7 - row 4 with the key insides white area, column 7 - row 4 have higher priority. For example, if you press column 7 - row 4 with column 11 - row 2, the hardware will output column 11 - row 2. A nother example, if y ou press coulmn 7 - row 4 with column 3 - row 1, the hardware will o utput column 7 - row 4.

This is another example. When userpresson column 11 - row 1 with another key at the same time. Gray area means have higher priority than column 11 - row 1.

11. BACKLIGHT ELECTRICAL/O PTICAL SPECIFICA TIONS

11.1 Absolute Maximum R atings (Ta=25°C

ltem Symbol		Conditions	Rating	Unit
A bsolute Maximum Forward Current	lfm		75	mA
Peak Forward Current	lfp	1 Msec Pl us 10% D uty Cy cle	180	mA
Reverse Voltage	Vr		1	V
Power Dissipation	Pd		225	mW

11.2 Backlight Electr o/Optical Chara cteristics

ltem Symbol		Min.	Тур.	Max.	Unit	Condifion
Forward Voltage	Vf	2.9	3.2 3.5		V	lf=45mA
Reverse Current	lr		30		uA	Vr=0.8V
Peak Wave Length	λp				nm	
Spectral Li ne Half Width	Δλ				nm	
Luminance Lv			TBD		cd/m ²	lf=45mA
BacklightColor	White					

11.3 Ba ckli ght Drawing

- (2). D riving voltage should be kept within specified range; excess voltage shortens display life.
- (3). Response time increases with decrease in temperature.
- (4). D isplay may turn black or dark blue at temperatures above its operational range; this is (however not pressing on the viewing area) may cause these gments to appear "fractured".
- (5). Me chanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured".

2.5 Storage

If any fluid leaks out of a damaged gass cell, wash off any human part that comes into contact with scap and water. Never swallow the fluid. The toxicity is extremely low but caution should be exercised at all the time.

2.6 Lim ited Warranty

Unless otherwise agreed between DISPLA Y and customer, DISPLA Y will replace or repair any of its L CD and LCM which is found to be defective electrically and visually when inspected in accordance with DISPLA Y acceptance standards, for a period on oneyear from date of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of DISPLA Y is limited to repair and/or replacement on the terms set forth above. DISPLA Y will not responsible for any subsequent or consequential events.